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RADIANT HEAT TRANSFER 1N A CLOSED SYSTEM OF SEMIOPAQUE BODIES 

SEPARATED BY AN EMITTING AND ABSORBING GAS MEDIUM 

V. P. Gorshenin UDC 536.3 

A radiant heat-transfer problem is solved for a closed emitting system 
bounded by a nonisothermal semiopaque shell with the absorption and 
emission of a nonisothermal gas medium taken into account. 

Analysis [1-4] shows that the solution of radiant heat-transfer problems at this time 
is performed for systems of bodies opaque to thermal radiation. 

The extensive utilization of films and plastics in the construction of modern struc- 
tures evokes the necessity to solve radiant heat-transfer problems for systems of semi- 
opaque bodies relative to thermal radiation. Moreover, the space of these structures is 
filled with a nonisothermal medium emitting and absorbing thermal radiation since tria- 
tomic gases are usually contained therein. The cause of the nonisothermy of the gas space 
is the different temperature of its bounding surfaces. 

We solve the problem formulated in general form first for boundary conditions of the 
first kind. As is known, in this case the temperatures of the body surfaces and the gas 
medium are given in this case. It is required to determine the resultant radiation Qr of 
each of the elements of the emitting system. 

Let us consider a nonisothermal semiopaque shell in which a nonisothermal medium is 
enclosed. In order to make an assumption about the diffuse nature of the emission, we 
divide the shell and the gas, respectively, into n isothermal surfaces and m = n + 1 
isothermal spaces, as is shown in Fig. i. The surfaces and the gas spaces are assumed gray. 

Each of the n surfaces of the closed system has the temperature T i and the following 
integral hemispherical radiation characteristics: el, Ai, D i. The temperature of the 
i-th space of the medium equals Tg i and its integral hemispherical radiation character- 
istics for the temperature Tgj and Tj have the respective values ~giJ, aged, dg~dand ~i,i, 
Agid, Dg~d . Because there are no w particles in the gas-mediumwe consider the 
energy scattering effect not to hold and, therefore, dg, d = l--~d; and Dg~,j = l--Agi,~. 

In connection with the fact that the surfaces and gas spaces are diffuse, we character- 
ize the geometry of the body system by the mean angular coefficients ~j-i, ~gj-~, ~-gT, ~g,~j 
The generalized angular coefficients are here determined by using the expression ~=D~, 
since the transmissivity D is taken out from under the integral. 

According to Fig. 2, the resultant emission for each of the n semiopaque surfaces can 
be represented in the form 

Q r  i = Q i e , ~ -  Qef ,  i - -  Q t  ,,~ = P iQie ,~  - -  Qef ,  i. ( 1 )  
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Fig. I F i g .  2 

Fig. I. Closed system of n isothermal semiopaque bodies and 
m isothermal gas spaces: I) semiopaque shell surface; 2) 
gas space surface; m = n + i; k = i-- 2; f = k + i = i-- i. 

Fig. 2. Diagram of radiant fluxes (W) during heat transfer 
of a semiopaque body to the environment. 

In (1) 

Q.:t, t = DiQie.i; Pi = 1 - - D i ;  Qef.t = 2 Qef'~tP~-J; 
1=1 

; '~ Qie,~ = D~-igefdFj~j-~ q- Dgj-ie~.~Eo.gJ i~ff-~, (2) 
i=l i=I 

where D~ i, D~j i are the reduced transmissivities of the nonisothermal gas medium relative d- ~ - 
to the radiant fluxes,,respectively, from the j-th surface and from the j-th gas space on 
the surface i, and Fgj Is the area of the surface of the gas space j visible from the 
surface i, and Eo,gj = ooTgj 4. 

The values of the quantities Dj_ i and Dgj_ i naturally depend on the arrangement of 
the appropriate pair of surfaces in the body system in each specific case and on the whole 
on the geometry of the system itself. As an illustration we consider certain cases of 
determining these quantities (see Fig. i) 

" D~-i = Off,jOgmdOg,.i; Ogi_, = ~m,flgz.j; 

D,_, = Dg,,i; Dg,_, = 1, ~ * i ~ - ,  = F,; 
(3) 

where, say, D.m j and d~ j are the transmissivities of parts of the gas space m located on 
the path between the surfaces j and i, respectively, at the temperatures Tj and Tgj; Fg k' 
and Fgk" are shown in Fig. 1. 

In order to simplify the solution of the problem, we eliminate the quantities Qef,i 
and Qef,j in (i). To do this, we set up a relationship between the effective emission of 
a semiopaque body and its resultant emission analogous to that obtained in [4] for opaque 
bodies. Taking into account that Qie,i = Qae,i/Ai and Qae,i = Qr,i + Qi (see Fig. 2), we 
obtain from (i) 

Qef,i = p,~Eo,~Fi + R,~Qr,,~, 

w h e r e  P, i  = P~ei/A~; R,~ = (1/A~--~ D d A ~ - -  1); Eo,~ = % T i  . 

Taking account of (2) and (4), after appropriate manipulation Eq. 
the following form: 

n 

a~jQ r,  J = b~ ( i  = 1, 2 . . . . .  n), 
i=l 

(4) 

(i) finally takes 

(5) 

where 
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t~ 

a,,= I + R ,~ [~  cp,_i-l- ( I - -  p,Dg,,,)(P,-,] ; 
/ = I  

]=1 

i=t 

The subscript i in the system (5) indicates the number of the equation and the sub- 
script j is the number of the unknown quantity Qr" 

In matrix form the system (5) is 

AQ = b, from which Q = A-*b, (6) 

where A = [ai~ ] is the initial square matrix, A -~ is the inverse matrix~ Q is a column 
vector whose ~lements are the unknown members Qr,j, and b is a column vector whose elements 
are the free terms b i. 

The system of linear equations (5) can be solved by different methods [5] by using 
standard programs for electronic computer computations. For i~3 the Kramer formula can 
be used [5]. 

To determine the resultant emission of the j-th space of the gas medium we use (4) as 
well as the known relationships 

n 5 s  " Q r ,gf = Qie, g]-- Qef,gJ; Qie,gj = ~ Di-gJQef,FPi-gJ + Dg,_g.i~dEo.giFg.,pg~_gj; (4); Qef,gJ = QgJ + Qt, gj = 
i = l  i = l  

tn t~ 

i = l  * = 1  
i = l  

Then after appropriate manipulations we obtain 

2 ~ * 
Q r,g..i = Ag/,,D~_gj (R.zQr i -k p.iEo,iF,) q~i-g~ -{- ~ (agj,zDgz~Jgi,~Eo.g, - -  egj,~Eo,gJ) fg/pgj_g~, (7) 

i = 1  

where  D. �9 and Dgi_g j a r e  t h e  r e d u c e d  t r a n s m i s s i v i t i e s  o f  t h e  n o n i s o t h e r m a l  gas medium 1-  3 
relative ~o the r~diant fluxes, respectively, from the i-th surface and from the i-th 
gas space in t h e  gas  s p a c e  j ,  Q r , g j  = g r , g j F g j ;  Fg j ,  Fg j*  i s  t he  a r e a  o f  the  s u r f a c e  o f  
the gas space j, respectively, of the total and the visible gas space i from the surface. 

The v a l u e s  o f  t h e  q u a n t i t i e s  Di_g j and Dgi_g j a r e  d e t e r m i n e d  by  a method a n a l o g o u s  
to the determination presented earlie~ for the quantities Dj_ i and Dgj_ i. 

The e m i s s i o n  Qt t r a n s m i t t e d  'by semiopaque  b o d i e s  i s  d e t e r m i n e d  f rom t h e  h e a t - b a l a n c e  
equat ion 

2 Qr ,J + ~ 0r,g j + Q't = 0. (8) 
i=l l=l 

If the gas medium isisothermal and its radiation characteristics at the temperatures 
Tg and T i have the respective values ~g, ag, dg and ~g,i, A&i, Dg~ , then the coefficients 
in the system (5) take the form 
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] = I  

a u  : :  - -  p~Dg, jR,jcOj_z; 

bi ----- ~.  (P~P.iDg,.~Eo.j- P*iEo.') FicPi-j -t- p,~(p,Dg.,- 1)Eo.~F,q),_,-[- p,egEo.gF,. 
]=1  

The resultant emission by the isothermal gas medium is determined as follows: 

(9) 

Qr.g, = ~ Ag.~R.~Qr.i + (P.zAg,~Eo.~--%Eo,g~F~, 
i = l  i = l  

where ~,g =gr.g ~F~. 
i = 1  

For gray surfaces and a gray gas according to Kirchhoff's law, A i = ~i and Ag,i = 
Cg,i(ag = eg), while P*i = Pi" 

NOTATION 

(io) 

T, absolute temperature, K; E, emissivity; A, a, absorptivity, respectively, at the 
body surface and gas medium temperatures; D, d, transmissivity, respectively, at the body 
surface and gas medium temperatures; Q, radiant flux, the inherent body emission, W; g, 
emission flux density, W/m=; Eo, density of the hemispherical integral emission of an 
absolutely black body, W/me; ~ , irradiation factor from one surface onto another; F, 
surface area participating in radiation heat transfer, me; oo~ Stefan--Boltzmann constant, 
W/(m~.K~). Subscripts: i, 2, ..., n, ordinal numbers of the body (surface) participating 
in the radiation heat transfer; gl, g2, ..., gn, gm, rodinal number of the gas space, 
m ffi n + I; g and g,i, gas medium, respectively, at the temperatures Tg and Ti; gi,j, 
gas space i at the temperature Tgj (or Tj); r, resultant surface emission; ie, emission 
incident on the surface; ef, effective s%rface emission; t, emission transmitted by the 
body; ae, emission absorbed by the body, ref, emission reflected by the surface; sh, shell. 
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